lunes, 26 de octubre de 2015

que es la ley de conservacion de la masa


LA LEY DE LA CONSERVACIÓN DE LA MASA
  
Balanza de precisión de Lavoisier (Musée des arts et métiers de Paris)
La combustión,  uno de los grandes problemas de la química del siglo XVIII, despertó el interés de Lavoisier porque éste trabajaba en un ensayo sobre la mejora de las técnicas del alumbrado público de París. Comprobó que al calentar metales como el estaño y el plomo en recipientes cerrados con una cantidad limitada de aire, estos se recubrían con una capa de calcinado hasta un momento determinado en que ésta no avanzaba más. Si se pesaba el conjunto (metal, calcinado, aire, etc.) después del calentamiento, el resultado era igual al peso antes de comenzar el proceso. Si el metal había ganado peso al calcinarse, era evidente que algo del recipiente debía haber perdido la misma cantidad de masa. Ese algo era el aire. Por tanto, Lavoisier demostró que la calcinación de un metal no era el resultado de la pérdida del misterioso flogisto, sino la ganancia de algo muy material: una parte de aire.
La experiencia anterior y otras más realizadas por Lavoisier pusieron de manifiesto que si tenemos en cuenta todas las sustancias que forman parte en una reacción química y todos los productos formados, nunca varía la masa. Esta es la ley de la conservación de la masa, que podemos enunciarla, pues, de la siguiente manera:

"En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos"

biografía de lavoisier

Antoine-Laurent de Lavoisier

(París, 1743 - id., 1794) Químico francés, padre de la química moderna. La revolución científica de los siglos XVI y XVII arrinconó muchas antiguas creencias y dejó atrás disciplinas de larguísima tradición, como la alquimia. Pero pese a las numerosas aplicaciones prácticas y a los conocimientos acumulados, en la segunda mitad del siglo XVIII la química seguía siendo un saber más empírico y especulativo que una verdadera ciencia. A menudo los investigadores se limitaban a anotar y describir cuidadosamente sus técnicas y experimentos, sin que de ello resultase la enunciación de leyes universalmente válidas que explicasen los fenómenos estudiados.

Antoine Lavoisier
Si Antoine Lavoisier es considerado el fundador de la química moderna, es precisamente por haber emprendido y coronado con éxito la labor de interpretación y sistematización de los dispersos conocimientos existentes; de hecho, buena parte de las aportaciones y descubrimientos de Lavoisier habían sido ya intuidos por sus predecesores. Gracias a una rigurosa metodología de mediciones cuantitativas que aplicó a sus experimentos, Antoine Lavoisier superó definitivamente las nebulosas hipótesis heredadas de la alquimia y proporcionó los conceptos y principios fundamentales de que tanta necesidad tenía la química para constituirse en una nueva ciencia.
Así, con Lavoisier quedó claramente establecida la distinción entre elemento (sustancia no descomponible mediante procesos químicos) y compuesto (sustancia compuesta de elementos). A él se debe asimismo la definitiva formulación del principio o ley de la conservación de la materia (Ley de Lavoisier), según la cual la cantidad de materia permanece constante en el transcurso de una reacción química; dicho de otro modo, la masa total de los reactantes es igual a la de los productos de la reacción. Bajo su impulso e inspiración, además, se prescindió de la antigua terminología alquímica y se estableció una nomenclatura química racional para los elementos y compuestos (expresando en los mismos nombres la composición química) que mantendría su vigencia hasta nuestros días.
Biografía
Orientado por su familia en un principio a seguir la carrera de derecho, Antoine-Laurent de Lavoisier recibió una magnífica educación en el Collège Mazarino, en donde adquirió no sólo buenos fundamentos en materia científica, sino también una sólida formación humanística. Lavoisier ingresó luego en la facultad de derecho de París, donde se graduó en 1764, por más que en esta época su actividad se orientó sobre todo hacia la investigación científica; siguió los cursos de matemáticas y astronomía de La Caille y los de química y botánica de Rouelle y Bernard de Jussieu, y, a pesar de su juventud, llevó una vida muy retirada.
En 1766 recibió la medalla de oro de la Academia de Ciencias francesa por un ensayo sobre el mejor método de alumbrado público para grandes poblaciones; tal estudio le había costado semanas enteras de aislamiento en la oscuridad para hacer sensibles sus pupilas a las mínimas diferencias de intensidad de varias fuentes de luz. Con el geólogo J.E. Guettard, confeccionó un atlas mineralógico de Francia. En 1768 presentó una serie de artículos sobre análisis de muestras de agua, y fue admitido en la Academia de Ciencias, de la que sería director en 1785 y tesorero en 1791.
Su esposa, Marie Paulze, con quien se casó en 1771, fue además su más estrecha colaboradora, e incluso tradujo al inglés los artículos redactados por su esposo. Un año antes, éste se había ganado una merecida reputación entre la comunidad científica de la época al demostrar la falsedad de la antigua idea, sostenida incluso por Robert Boyle, de que el agua podía ser convertida en tierra mediante sucesivas destilaciones.

Antoine Lavoisier y su esposa (detalle de un óleo de Jacques-Louis David, 1788)
Sometiendo a ebullición durante varios días un recipiente lleno de agua cerrado herméticamente, Lavoisier obtuvo, al igual que sus predecesores, un poso terroso en el fondo. Sin embargo, observó que el recipiente y su contenido pesaban lo mismo que antes de la ebullición, y tras separar el poso, notó que tampoco el volumen de agua se había alterado. En cambio, el peso del recipiente vacío se había reducido en una magnitud igual a la del poso, por lo que éste sólo podía proceder de las paredes del recipiente.
Tal experiencia fue, de paso, la primera de las sucesivas confirmaciones del principio de conservación de la materia obtenidas por Lavoisier. La hipótesis no era desconocida entre los científicos, pero chocaba con las ideas tradicionales e incluso con nociones que parecían empíricamente "evidentes", como que el crecimiento de una semilla era debido a la creación de materia, o que la combustión consistía en la destrucción de una parte de la misma.
La combustión y el flogisto
Probablemente el primer intento científico de explicar la combustión fue realizado por el neerlandés Van Helmont (1580-1644). El escaso éxito de sus peregrinas ideas contrasta con el de la teoría del flogisto, que dominaría el pensamiento de los estudiosos durante la mayor parte del siglo siguiente. La teoría del flogisto fue desarrollada principalmente por el alemán Johann Becher (1635-1682) y especialmente por su discípulo Georg Stahl (1660-1734) a finales del siglo XVII. Según la teoría del flogisto, los materiales combustibles contenían una sustancia (a la que se denominó flogisto) que emitían al arder. De acuerdo con esta teoría, un material no combustible, como las cenizas, no ardería porque el flogisto que contenía el material inicial (la madera) ya había sido expulsado.
Sin embargo, las variaciones de peso suponían un problema importante para dicha teoría. Muchos objetos realmente pesan más después de haberse quemado. ¿Cómo puede explicarse este fenómeno si el flogisto es expulsado del material ardiente? Una explicación que se ofreció fue que el flogisto podía tener un peso negativo. Para algunos tal idea era absurda, pero, a pesar de sus incoherencias, la teoría del flogisto siguió siendo popular entre los químicos durante muchos años, y todavía en tiempos de Lavoisier eran muchos los que se inclinaban por esta hipótesis.
A partir de 1772, la especulación acerca de la naturaleza de los cuatro elementos tradicionales (aire, agua, tierra y fuego) llevó a Antoine Lavoisier a emprender una serie de investigaciones sobre el papel desempeñado por el aire en las reacciones de combustión. De los numerosos experimentos que llevaría a cabo para esclarecer la cuestión, el primero con trascendentales consecuencias se centró en una de las sustancias que aumentaban de peso en la combustión: el estaño. Después de calentar con fuego un recipiente herméticamente cerrado que contenía estaño, Lavoisier constató que efectivamente se había incrementado el peso del metal, pero que el peso total del recipiente y su contenido no había variado, y que el incremento del peso del estaño correspondía exactamente con la disminución del peso del aire.

El peso total (aire y materia combustible) no cambia en la combustión
Experimentos similares con metales como el mercurio y el platino y con otros elementos como el fósforo y el azufre lo llevaron a establecer un nuevo concepto de combustión y a describir con exactitud la naturaleza del aire. A partir de los trabajos previos de Joseph Priestley, Antoine Lavoisier acertó a distinguir entre un «aire» que no se combina con el combustible tras la combustión o calcinación (el nitrógeno) y otro que sí lo hace, al que denominó oxígeno (de oxys genea, productor de ácido). El aire, entendido desde la Antigüedad como uno de los cuatro elementos, no era en consecuencia una sutancia simple, sino una mezcla de dos gases, cuya proporción calculó con relativa precisión (73% de hidrógeno y 27% de oxígeno; en realidad, 78% y 21%).
Respecto a la combustión, Lavoisier estableció que todos los fenómenos ordinarios de combustión consisten en la combinación del oxígeno atmosférico con la sustancia combustible, tanto si ésta arde (madera, papel, carbón) como si se altera, sencillamente, para dar lugar a óxidos (como lo hacen, en condiciones ordinarias, los metales). El insigne químico hizo hincapié en el hecho de que cuando se queman el azufre o el fósforo, éstos ganan peso por absorber oxígeno, mientras que el plomo metálico formado tras calentar el plomo mineral lo pierde por haber perdido oxígeno. Al arder, el carbón va menguando progresivamente porque el carbono contenido en el mineral se combina con el oxígeno del aire para formar un nuevo gas, el óxido de carbono; en la calcinación del estaño, el metal gana peso porque se combina con el oxígeno atmosférico, dando lugar al óxido de estaño.
Los resultados cuantitativos y demás evidencias que obtuvo Lavoisier se oponían claramente a la teoría del flogisto, aceptada por entonces incluso por Joseph Priestley: ni el flogisto ni ninguna otra sustancia hipotética se liberaba o se adquiría en los procesos de combustión de las sustancias. Lavoisier publicó en 1786 una brillante refutación de dicha teoría, que logró persuadir a gran parte de la comunidad científica del momento, en especial la francesa. En parte por influencia de prejuicios nacionales, la aportación de Lavoisier no fue al principio bien acogida en Alemania (sede de la teoría del flogisto), en Inglaterra y en otros países, pero terminaría por imponerse incluso en Alemania, gracias a la labor de Martin Klaproth.
Paralelamente a los estudios sobre la combustión, otras cuestiones merecieron la atención de Lavoisier durante aquellos años. Entre ellas sobresale, sin duda, la naturaleza del agua, que, al igual que el aire, había sido concebida como una sustancia simple (uno de los cuatro elementos) desde los tiempos de la filosofía presocrática. En 1781, el físico y químico inglés Henry Cavendish logró obtener agua detonando una mezcla de aire e hidrógeno, lo que revelaba su naturaleza compuesta. Pero fue Lavoisier quien, en 1783, interpretó correctamente los resultados del experimento al demostrar que el agua era un compuesto formado únicamente de hidrógeno y oxígeno.
La nomenclatura química
Las expresiones sencillas y racionales de que se sirve hoy la química y su método de nomenclatura derivan en gran parte del esfuerzo desarrollado por Lavoisier y algunos de sus colaboradores para librar a dicha ciencia de las expresiones herméticas o ambiguas que constituían el residuo natural de un largo período de sueños e ilusiones alquimistas. Antoine Lavoisier organizó con este fin reuniones en su laboratorio químico de París, a las que asistían el químico Claude Louis Berthollet, el dramaturgo y orador Antoine François de Fourcroy y el aficionado Guyton de Morveau, que había ido precisamente a París para presentar su proyecto de nomenclatura simplificada. En 1787 el nuevo Método de nomenclatura química fue presentado a la Academia de Francia, y pocos años después, especialmente tras la publicación del Tratado elemental de química de Lavoisier (1789), aquella intuitiva y novedosa terminología triunfó completamente.

Antoine Lavoisier
El Método de nomenclatura química divide las sustancias en elementos y compuestos, siguiendo un concepto ya introducido por Robert Boyle. Entre los elementos se encuentran el oxígeno, el hidrógeno y el nitrógeno, cuya denominación es debida a Lavoisier, y que intervienen en la composición del aire y del agua, dos de los cuatro "elementos" que desde la antigua Grecia y durante más de dos mil años se habían conceptuado como sustancias simples. Se incluye también entre los elementos el azufre, el fósforo y los metales, contrariamente a lo que establecía la teoría del flogisto, mientras que los ácidos fosfórico y sulfúrico, así como muchos óxidos metálicos que eran considerados simples, quedaron definitivamente clasificados como compuestos.
Lavoisier y sus colaboradores dividieron los compuestos en dos grandes clases: binarios y ternarios. A los binarios pertenecen los ácidos, cuyos nombres se forman con dos palabras: una común (ácido) y otra particular para cada uno: ácido carbónico,ácido sulfúrico, etc. Para aquellos ácidos de un mismo elemento que contienen una cantidad menor de oxígeno, la terminación "ico" se transforma en "oso", como en la denominación ácido sulfuroso. Los compuestos oxigenados de los metales que, como bases, se oponen a los ácidos, reciben el nombre genérico de óxidos, que queda especificado con la indicación del nombre del metal que interviene en la combinación (por ejemplo, óxido de plomo). Son también binarios los sulfuros, fosfuros, carburos y los compuestos de dos metales, mientras que entre los ternarios se incluyeron las sales conocidas en aquel tiempo, a las que se aplica la terminología hoy en uso.
La expansión de la doctrina defendida por Antoine Lavoisier se vio favorecida con la publicación en 1789 de su obra Tratado elemental de química. De este libro, que contiene una concisa exposición de su labor, cabe destacar la formulación de un primer enunciado de la ley de la conservación de la materia. Escrito con un ejemplar desarrollo lógico y con un estilo que puede calificarse de cristalino, y ampliamente difundido a través de numerosas ediciones y traducciones, el Tratado ha sido considerado el texto fundacional de la química moderna. Ese mismo año, en colaboración con otros científicos, fundó los Annales de Chimie (Anales de Química), publicación monográfica dedicada a la nueva química.

Lavoisier también efectuó investigaciones sobre la fermentación y sobre la respiración animal. De los resultados obtenidos tras estudiar el intercambio de gases durante el proceso de respiración, en una serie de experimentos pioneros en el campo de la bioquímica, concluyó que la respiración es un tipo de reacción de oxidación similar a la combustión del carbón, con lo cual se anticipó a las posteriores explicaciones del proceso cíclico de la vida animal y vegetal. Para este trabajo contó con la ayuda de otro famoso científico francés, Pierre Simon Laplace (1749-1827).
Como resultado de sus estudios sobre los cambios de calor que se producen durante las reacciones químicas, Lavoisier y Laplace dejaron asimismo sentado uno de los principios fundamentales de la termoquímica: ambos científicos descubrieron que la cantidad de calor necesaria para descomponer un compuesto es igual a la cantidad de calor liberada durante la formación del compuesto a partir de sus elementos. Esta línea de investigación sería desarrollada más tarde, en la década de 1830, por el químico ruso-suizo Germain Henri Hess (1802-1850).
Antoine-Laurent de Lavoisier fue asimismo un destacado personaje de la sociedad francesa de su tiempo. De ideas moderadas, desempeñó numerosos cargos públicos en la Administración del Estado, si bien su vinculación con el impopular Ferme Générale (un organismo privado de recaudación de impuestos) le supuso la enemistad con el revolucionario Marat. Un año después del inicio del Terror, en mayo de 1794, un tribunal revolucionario lo condenó a la guillotina tras un juicio de tan sólo unas horas.
La revolución que supuso para la química la obra de Lavoisier permitió desarrollar la investigación de las leyes de las combinaciones químicas, investigación que se llevó a cabo, como había enseñado el químico francés, aplicando su rigurosa metodología de mediciones cuantitativas y utilizando como instrumento fundamental la balanza, pero también midiendo volúmenes, presiones y temperaturas. Apenas dos décadas después de la muerte de Lavoisier, la teoría atómica de Dalton y la hipótesis deAvogadro proporcionaron los conceptos necesarios para justificar los resultados obtenidos experimentalmente sobre las combinaciones químicas, estableciendo las fecundas bases sobre las que la química desplegaría su imparable progreso.

contaminacion

La contaminación es la introducción de sustancias en un medio que provocan que este sea inseguro o no apto para su uso.1 El medio puede ser un ecosistema, un medio físico o un ser vivo. El contaminante puede ser unasustancia químicaenergía (comosonidocalorluz o radiactividad).
Es siempre una alteración negativa del estado natural del medio, y por lo general, se genera como consecuencia de la actividad humana considerándose una forma de impacto ambiental.
La contaminación puede clasificarse según el tipo de fuente de donde proviene, o por la forma de contaminante que emite o medio que contamina. Existen muchos agentes contaminantes entre ellos las sustancias químicas (como plaguicidas, cianuro, herbicidas y otros.), los residuos urbanos, el petróleo, o las radiaciones ionizantes. Todos estos pueden producir enfermedades, daños en los ecosistemas o el medioambiente. Además existen muchos contaminantes gaseosos que juegan un papel importante en diferentes fenómenos atmosféricos, como la generación de lluvia ácida, el debilitamiento de la capa de ozono, y el cambio climático.
Hay muchas formas de combatir la contaminación, y legislaciones internacionales que regulan las emisiones contaminantes de los países que adhieren estas políticas. La contaminación está generalmente ligada al desarrollo económico y social. Actualmente muchas organizaciones internacionales como la ONU ubican al desarrollo sosteniblecomo una de las formas de proteger al medioambiente para las actuales y futuras generaciones.

toxixidad

Toxicidad

Símbolo identificativo de las sustancias tóxicas.
La toxicidad es la capacidad de alguna sustancia química de producir efectos perjudiciales sobre un ser vivo, al entrar en contacto con él. Tóxico es cualquier sustancia, artificial o natural, que posea toxicidad (es decir, cualquier sustancia que produzca un efecto dañino sobre los seres vivos al entrar en contacto con ellos). El estudio de los tóxicos se conoce como toxicología. Ninguna sustancia química puede ser considerada no tóxica, puesto que cualquier sustancia (agua, oxígeno) es capaz de producir un efecto tóxico si se administra la dosis suficiente. Esto queda representado en la famosa frase de Paracelso "sólo la dosis hace al veneno". Todas las sustancias poseen toxicidad; sin embargo unas tienen mayor toxicidad que otras. La intoxicación es el estado de un ser vivo en el que se encuentra bajo los efectos perjudiciales de un tóxico.

metodos de separacion

Existen muchos métodos, aquí trataremos los más importantes procedimientos mecánicos y físicos: El siguiente cuadro nos muestra los principales métodos de separación de las mezclas según los componentes y sus ejemplos respectivos.
A continuación detallaremos cada uno los métodos de separación de mezclas:
1. Cristalización – Entrar
2. Cromatografía – Entrar
3. Destilación – Entrar
4. Centrifugación – Entrar
5. Filtración – Entrar
6. Decantación – Entrar
7. Levigación – Entrar
8. Tamizado – Entrar

mezclas

Se le llama mezcla a la combinación de al menos dos sustancias que continúan manteniendo sus propiedades y en las que dicha unión no causa ninguna reacción química. Al no producirse alguna reacción química, las sustancias pueden ser separadas a partir de métodos físicos.
Se habla de dos clases de mezclas: homogéneas y heterogéneas:
A las mezclas homogéneas también se las conoce bajo el nombre de disoluciones. En estas el soluto, es decir la sustancia que se disuelve, ya sea en estado sólido, líquido o gaseoso, se dispersa en eldisolvente (que suele encontrarse en estado líquido) en partículas de tamaño muy reducido. Esto trae como consecuencia la conformación de una mezcla homogénea en lo molecular. Si se toman muestras de menor tamaño, incluso a escala molecular, su composición seguirá siendo constante. Un ejemplo de este tipo de mezcla es el aire o la salmuera.
Las mezclas heterogéneas, también conocidas bajo el nombre de suspensiones, se caracterizan por poseer moléculas de gran tamaño, de tal forma que algunas pueden percibirse por el ojo humano. Estas mezclas no son uniformes, y el disolvente se encuentra en mayores proporciones que el soluto. Un ejemplo de estas es el agua con aceite.
Las técnicas que se utilizan para separar las mezclas son:
Tamización: esta puede ser utilizada para la separación de mezclas sólidas, compuestas con granos de diversos tamaños. Lo que se hace es hacer pasar a la mezcla por varios tamices.
Filtración: esta técnica permite la separación de aquellas mezclas que están compuestas por líquidos y sólidos no solubles. Para esto, se utiliza un embudo con un papel de filtro en su interior. Lo que se hace pasar a la mezcla por ellos.
Separación magnética: esta técnica sólo es útil a la hora de separar sustancias con propiedades magnéticas de aquellas que no las poseen. Para esto, se utilizan imanes que atraen a las sustancias magnéticas y así se logra separarlas de las que no lo son.
Decantación: esta técnica sirve para la separación de líquidos que tienen diferentes densidades y no son solubles entre sí. En esta se requiere un embudo de decantación que contiene una llave para la regulación del líquido. Por medio de esta se permite el paso del líquido más sólido hacia un recipiente ubicado en la base, quedando el líquido con menor densidad en el embudo.


Cristalización y precipitación: esta permite la separación de un soluto sólido de que se encuentra disuelto en un disolvente.  Se calienta la disolución para concentrarla, luego se la filtra y se la coloca en un cristalizador hasta que se evapore el líquido, quedando el sólido en forma de cristal.
Destilación: es útil para la separación de líquidos que son solubles entre sí. Lo que se hace es hervirlos y, como esto lo hacen a distintas temperaturas, se toman sus vapores por un tubo para luego pasarlo al estado líquido nuevamente. Esto es posible gracias a que hierven en distintos tiempos.
Artículos Relacionados:
© 2012-2015 TiposDe.Org - Todos los tipos y clasificaciones en un solo lugar.

propiedades fisicas

Las propiedades físicas de la materia son aquellas características propias de la sustancia, que al ser observadas o medidas no producen nuevas especies químicas, por ejemplo: Olor, color, sabor, forma cristalina, temperatura de fusión, temperatura de ebullición, densidad, viscosidad, tensión superficial, presión de vapor, solubilidad, dureza, brillo, maleabilidad, ductibilidad, conductividad, etcétera. ¿Qué es un cambio físico? Aquellos en que se conservan las sustancia.



avances cientificos

1.- Inmunoterapia contra el cáncer
/media/top5/top-1_6enero2014.jpg
La inmunoterapia contra el cáncer, un método que se ha estado elaborando durante décadas, encabezó la lista de los avances científicos más importantes de 2013, anunciada por la revista Science.
El método, que representa un cambio de enfoque en el tratamiento del cáncer, emplea el sistema de inmunidad del cuerpo para combatir los tumores en lugar de atacarlos directamente con compuestos químicos o radiación.
"Los nuevos tratamientos impulsan a las células T y otras células inmunológicas a combatir el cáncer, y los editores de Science creen que dichas estrategias son lo suficientemente prometedoras como para encabezar su lista de los descubrimientos científicos más importantes del año", señaló un comunicado de la Asociación Estadounidense para el Avance de la Ciencia, que publica la revista.
2.- Técnica CRISPR
/media/top5/top-2_6enero2014.jpg
La lista de Science de los otros logros científicos que considera más innovadores del 2013 incluyó la técnica CRISPR de edición genética, descubierta en bacterias, pero que ahora los investigadores emplean como un escalpelo para la cirugía en genes individuales.
Más de una docena de equipos investigadores han usado la técnica para manipular los genomas de varias células vegetales, animales y humanas.
3.- Biología estructural en diseño de vacunas
/media/top5/top-3_6enero2014.JPG
La revista también resaltó los avances en biología estructural como guía en el diseño de las vacunas.
El año pasado, los investigadores usaron la estructura de un anticuerpo para diseñar un inmunógeno, el ingrediente principal de una vacuna para un virus de infancia causante de la hospitalización de millones cada año.

Chernobyl

                         En el 9 de septiembre de 1982, tuvo lugar una fusión parcial de la base en el reactor nº 1 de la planta. Aunque debido al secretismo de la Unión soviética, no se informó a la comunidad internacional hasta el 1985. Se reparó y continuó funcionando.
El accidente grave se produjo en 1986, cuando explotó el reactor número 4. Posteriormente, a pesar de la gravedad del accidente y debido a las necesidades energéticas los reactores 1, 2 y 3 siguieron en marcha.
El reactor nuclear 2 de Chernobyl se cerró en el 1991, el reactor 1 en el 1996 y el reactor tres dejó de funcionar en el 2000.